0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Измерение трансмембранного потенциала

Изменения трансмембранного потенциала.

Если мы с помощью микроэлектродов измерим разность потенциалов между наружной и внутренней поверхностью клеточной мембраны, как это показано на рисунке, то зарегистрируем так называемый трансмембранный потенциал покоя (ТМПП), имеющий отрицательную величину, в норме составляющую около —90 mV.

При возбуждении клетки резко изменяется проницаемость ее стенки по отношению к ионам различных типов. Это приводит к изменению ионных потоков через клеточную мембрану и, следовательно, к измене­нию величины самого ТМПП. Кривая изменения трансмембранного потенциала во время возбуждения получила название трансмембранного потенциала действия (ТМПД).

Различают несколько фаз ТМПД миокардиальной клетки.

Фаза 0. Во время этой начальной фазы возбуждения — фазы депо­ляризации — резко увеличивается проницаемость мембраны клетки для ионов Na + , которые быстро устремляются внутрь клетки (быст­рый натриевый ток). При этом, естественно, меняется заряд мембра­ны: внутренняя поверхность мембраны становится положительной, а наружная — отрицательной. Величина ТМПД изменяется от -90 mV до +20 mV, т.е. происходит реверсия заряда — перезарядка мембраны. Продолжительность этой фазы не превышает 10 мс.

Фаза 1. Как только величина ТМПД достигнет примерно +20 mV, проницаемость мембраны для Na + уменьшается, а для СГ увеличивается. Это приводит к возникновению небольшого тока отрица­тельных ионов СГ внутрь клетки, которые частично нейтрализуют избыток положительных ионов Na + внутри клетки, что ведет к неко­торому падению ТМПД примерно до 0 или ниже. Эта фаза носит название фазы начальной быстрой реполяризации.

Фаза 2. В течение этой фазы величина ТМПД поддерживается при­мерно на одном уровне, что приводит к формированию на кривой ТМПД своеобразного плато. Постоянный уровень величины ТМПД поддерживается при этом за счет медленного входящего тока Са 2+ и Na + направленного внутрь клетки, и тока К + из клетки. Продолжительность этой фазы велика и составляет около 200 мс. В течение фазы 2 мышечная клетка остается в возбужденном состоянии, начало ее характеризуется деполяризацией, окончание — реполяризацией мембраны.

Фаза 3. К началу фазы 3 резко уменьшается проницаемость кле­точной мембраны для Na + и Са 2+ и значительно возрастает прони­цаемость ее для К + Поэтому вновь начинает преобладать переме­щение ионов К + наружу из клетки, что приводит к восстановлению прежней поляризации клеточной мембраны, имевшей место в со­стоянии покоя: наружная ее поверхность вновь оказывается заря­женной положительно, а внутренняя поверхность — отрицательно.

ТМПД достигает величины ТМПП. Эта фаза носит название фазы конечной быстрой реполяризации.

Фаза 4. Во время этой фазы ТМПД, называемой фазой диастолы, происходит восстановление исходной концентрации К + Na + , Са 2+ СГ соответственно внутри и вне клетки благодаря действию «Na + -K + -Hacoca». При этом уровень ТМПД мышечных клеток оста­ется на уровне примерно -90 mV.

2. Как заряжена наружная поверхность клеточной мембраны:

а) невозбужденной мышечной клетки? б) клетки, находящейся в состоянии деполяризации? в) клетки, находящейся в состоянии реполяризации?

Наружная поверхность клеточной мембраны невозбужденной мышечной клетки заряжена положительно. Заряд обусловлен различной концентрацией ионов натрия и калия снаружи и внутри клетки. Свыше 90% ионов, расположенных снаружи мембраны, — это положительно заряженные ионы натрия и отри­цательно заряженные ионы хлора. Внутри клетки находятся глав­ным образом ионы калия (положительные ионы), причем отрица­тельными ионами являются разнородные органические, преимущественно белковые, молекулы. Концентрация ионов натрия почти в 10 раз больше снаружи клетки, а концентрация ионов калия — почти в 30 раз больше внутри клетки.

Наружная поверхность мембраны клетки, находящейся в состоянии деполяризации заряжена отрицательно. В процессе деполяризации ток ионов натрия совпадает с концентрационным градиентом, и ионы натрия проникают через мембрану в клетку. Проникая внутрь клетки, натрий вносит положительные заряды, а наружная поверхность мембраны становиться отрицательно заряженной.

Наружная поверхность мембраны клетки, находящейся в состоянии реполяризации заряжена положительно. Приток ионов натрия в клетку сопровождается выходом ионов калия из клетки, что также способствует процессу деполяризации. В тот момент, когда выход ионов калия из клетки начинает превы­шать ток ионов натрия в клетку, начинается процесс восстановле­ния, или угасания возбуждения, или реполяризации. Ток ионов калия из клетки способствует восстановлению внутри клетки пер­воначального положительного потенциала.

Дата добавления: 2014-12-29 ; просмотров: 2329 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Измерение трансмембранного потенциала

Величину трансмембранного потенциала лучше всего измерять с помощью двух электродов, помещенных по разные стороны мембраны. Однако этот способ применим лишь для плоских модельных мембранных систем и некоторых крупных клеток. Обычно же приходится измерять потенциал на мембране либо протеоли-посом, либо клеток или органелл, например митохондрий или хло-ропластов. Для этих случаев разработано несколько методов.

Распределение ионов в соответствии с уравнением Нернста. В систему добавляют ион, способный проникать через мембрану, и он перераспределяется между внешней средой и внутренним объемом в соответствии с уравнением Нернста. На этом принципе основано использование в качестве молекулярных зондов таких гидрофобных ионов, как ТФФ + или 86 кЬ-валиномицин. Чтобы определить трансмембранный потенциал, нужно знать концентрацию иона внутри везикулы, органеллы или клетки, что нередко превращается в серьезную проблему. Ошибки в измерении Д* могут, в частности, возникнуть, если большие количества зонда связываются с мембранами клетки или если неправильно определен внутренний объем.

Читать еще:  Что определяет узи простаты

Спин-меченные ЭПР-зонды. Для этой цели используют несколько зондов — гидрофобных ионов, к которым ковалентно пришита парамагнитная нитроксильная группа. Концентрацию зонда, связанного с мембраной, легко определить из спектра ЭПР; при образовании на мембране потенциала зонд перераспределяется между фазами, и по изменению его концентрации в мембране можно оценить величину Д*. Изменение концентрации мембраносвязанного зонда обусловлено тем, что для внутривезику-лярного пространства отношение площади поверхности к объему гораздо больше, чем для внешнего раствора.

Оптические молекулярные зонды. Спектральные характеристики многих оптических зондов зависят от трансмембранного потенциала. Из наиболее распространенных назовем флуоресцентные производные мероцианина, оксонола и цианиновые красители. Все эти соединения связываются с мембраной, и, по-видимому, в основе их реакции на изменения трансмембранного потенциала может лежать несколько механизмов. Чаще всего взаимодействие электрического диполя, каким является зонд, с электрическим полем приводит к изменению ориентации диполя в бислое. В ряде случаев изменение степени агрегации зонда в бислое влечет за собой изменение квантового выхода флуоресценции. Большинство зондов применяют для определения трансмембранного потенциала, имеющего знак минус внутри везикулы, однако некоторые красители, например оксонолы, используются при обратной полярности потенциала.

К зондам другого типа, спектр поглощения которых чувствителен к трансмембранному потенциалу, относятся соединения стирольной природы, образующие в мембране конъюгированные структуры. Изменение их спектров поглощения при наложении потенциала обусловлено так называемым явлением электрохро-мизма. Переход молекулы зонда из основного состояния в возбужденное при поглощении кванта света сопровождается перераспределением электронов. На энергию электронного перехода влияет градиент потенциала, вектор которого параллелен направлению этого смещения заряда. Подобные электрохромные изменения спектра наблюдаются также для природных пигментов фотосинтетических мембран — каротиноидов. Преимущество зондов этого типа состоит в том, что соответствующие реакции происходят очень быстро и не зависят от степени агрегации или распределения зонда. Все эти свойства делают такие зонды особенно полезными для быстрых кинетических измерений.

КОНЦЕПЦИЯ ЭНЕРГИЗОВАННОЙ МЕМБРАНЫ

Термин «энергизованная мембрана» трактуется обычно довольно широко, но в действительности он означает лишь, что поток ионов через бислой может использоваться для совершения работы. Чаще всего ионный поток создают протоны, и разность электрохимических потенциалов протонов между двумя разделенными бислоем фазами называется протондвижущей силой.

— разность электрохимических потенциалов протонов, выраженная в Дж/моль; частное от деления этой величины на постоянную Фарадея будет иметь размерность мВ.

А* = относительно наружного раствора,

ДрН = относительно наружного раствора.

Протондвижущая сила является мерой изменения свободной энергии при переносе протонов с одной стороны мембраны на другую. В митохондриях и фотосинтетических системах за счет протондвижущей силы происходит синтез АТР, но она может использоваться и системами транспорта растворенных веществ. Все сказанное выше детально рассматривается в рамках хемиосмотической теории.

Для нахождения Дн, нужно знать как Д*, так и ДрН. Методы определения Д* мы обсудили выше. ДрН обычно оценивают из данных по распределению по обе стороны мембраны слабых кислот или оснований. Их нейтральные формы проникают через липидный бислой, а непроникающие заряженные формы накапливаются в зависимости от рН с той или другой стороны мембраны. Можно использовать для этой цели как радиоактивные производные, так и оптические зонды. Один из наиболее часто используемых для измерения ДрН зондов — 9-аминоакридин — аккумулируется внутри везикул с кислым содержимым, что ведет к тушению флуоресценции зонда.

Задача: исследование трансмембранных ионных токов

Живые клетки покрыты мембраной, структурную основу которой составляет двойной слой липидов, слабо проницаемый для воды и практически непроницаемый для ионов. Каждая клетка должна обмениваться с внешней средой различными веществами и в частности ионами. Перенос ионов через мембрану играет важную роль в процессах возбуждения клетки и передачи сигналов. Ионы проникают в клетку и выходят из нее через встроенные в мембрану белковые структуры — каналы и транспортеры.

Транспортеры — это мембранные белки, которые соединяются с переносимым веществом по одну сторону мембраны, переносят это вещество через мембрану и затем его освобождают. Такой перенос становится возможным потому, что в результате соединения с веществом транспортер меняет конформацию (т.е. форму, ориентацию). Бытовой аналогией транспортера является лифт, который «присоединяет» к себе людей, переносит их на другой этаж и «освобождает». Важнейший транспортер в клетках эукариот — это натрий-калиевый насос. Для работы этого насоса требуется энергия, которую он черпает из запасенной в клетке АТФ. За один цикл своей работы насос выводит из клетки 3 иона Na + и вводит в нее 2 иона K + . Одна молекула этого транспортера совершает примерно 10 3 циклов в секунду. Сходная частота циклов характерна и для других видов транспортеров.

Читать еще:  Аденома простаты диета питание

Каналы — это белки, которые выполняют функцию мембранных пор, так как формируют отверстия, сквозь которые могут проходить ионы. Мембранные каналыселективны — проницаемы только для определенных веществ. Селективность обусловлена радиусом пор и распределением заряженных функциональных групп в них. Существуют каналы, селективно пропускающие ионы натрия (натриевые каналы) и ионы калия (калиевые каналы), а также хлоридные каналы. Для каждого вида ионов существует не один, а довольно много видов каналов. Сквозь один канал за секунду проходит 10 6 — 10 7 ионов.

Несмотря на фундаментальные различия в механизме транспорта через каналы и транспортеры, они могут быть образованы высоко гомологичными белками. Так, недавно получены данные, что мутация единственной аминокислоты в белке транспортера двухвалентных металлов DMT1 приводит к его превращению в кальциевый канал . Кроме того, существует по крайней мере один транспортер (хлорид-бикарбонатный обменник эритроцитов), осуществляющий 10 5 переносов в секунду, что очень близко к скоростям, характерным для каналов, и заставляет предположить существование у него некоего «промежуточного» между каналами и транспортерами механизма.

Так как ионы — это электрически заряженные молекулы, при их переходе через мембранные каналы переносится и заряд, а значит, через мембрану течет электрический ток. Этот ток можно измерить. Чем больше разность потенциалов между сторонами мембраны, тем больше ток. Проводимость (отношение тока к разности потенциалов) одиночного канала в открытом состоянии варьируется в зависимости от вида канала, от 1-2 до 30-50 пикосименсов. Это значит, что при разности потенциалов равном 100 мВ через канал потечет ток в несколько пикоампер.

Решение: история вопроса.

Один внутриклеточный электрод. Измерение разности потенциалов.

Первоначально электрические явления на клеточных мембранах измеряли с помощью острых стеклянных микроэлектродов, вводившихся в клетку. Техника с одним внутриклеточным электродом позволяет измерять разность потенциалов или ток, но не даёт возможности фиксировать их на определенном уровне, так что во время исследования одновременно меняются оба параметра. Кроме того, классические острые микроэлектроды дают возможность измерения исключительно на целой клетке, которая имеет, как правило, различные типы белков и транспортеров. Все это, вместе взятое, сильно затрудняет интерпретацию данных, полученных таким методом.

Двухэлектродная фиксация потенциала.

Тот факт, что фиксация трансмембранного потенциала позволит измерять мембранную проводимость по изменениям тока при постоянном напряжении, был впервые осознан еще в 30-х гг. XX века, и тогда же английские исследователи Алан Ходжкин и Эндрю Хаксли (Alan Hodgkin and Andrew Huxley) начали эксперименты с двухэлектродной фиксацией потенциала (>).

Суть метода состоит в следующем. В клетку вводятся два электрода, еще один — электрод сравнения — остается вне клетки. Первый внутриклеточный электрод служит для измерения трансмембранной разности потенциалов (то есть разности потенциалов между ним и электродом сравнения), второй может подавать ток. Специальное устройство — генератор сигнала — задаеткомандный потенциал, которому должен быть равен трансмембранный потенциал. Измеренный трансмембранный потенциал подается на вход устройства сравнения, которое вычитает измеренный потенциал из командного и, в зависимости от величины разности, подает ток на токовый электрод, так, чтобы скомпенсировать эту разницу. Монитор тока, в свою очередь, постоянно измеряет величину тока, которая для этого необходима. В 1930-х и 40-х годах, когда работали Ходжкин и Хаксли, не существовало микроэлектродов, поэтому в качестве внутриклеточных электородов использовались тонкие проволоки. Это определило выбор объекта — единственной животной клеткой, в которую можно было ввести две изолированные друг от друга проволоки, был гигантский аксон кальмара. На этом объекте методом двухэлектродной фиксации потенциала исследователи выполнили эксперименты, в которых была установлена ионная природа потенциала действия и впервые постулировано существование ионных каналов(Нобелевская премия 1963 г., поделена с Дж.Экклзом, получившим ее за исследования в области синаптической передачи). Двухэлектроднная фиксация потенциала применяется и в настоящее время, с использованием острых стреклянных микроэлектродов, однако даже с ними эта методика имеет существенные ограничения: во-первых, два электрода могут быть введены только в весьма крупную клетку (например, ооцит лягушки), во-вторых, она позволяет измерять проводимость всей клеточной мембраны, со всеми, как правило разнородными, каналами в ней.

Решение: patch-clamp, его варианты и конфигурации

Гигаомный контакт

В конце семидесятых годов XX в. E.Neher и B.Sakmann обнаружили, что если стеклянной пипеткой с диаметром 1-2 микрона коснуться клеточной мембраны, то на границе «мембрана — стекло» образуется контакт с сопротивлением в несколько гигаОм — это так называемый гигаомный контакт . Он позволяет изолировать от внешней среды и от остальной части мембраны тот ее фрагмент, который находится внутри пипетки. Отграниченный пипеткой фрагмент мембраны и называется patch — «заплатка», слово clamp (фиксация) в названии метода имеет два значения: (1) захват и изоляция этой «заплатки» и (2) фиксация трансмембранного потенциала или тока в изолированном фрагменте, или, как будет описано позже, целой клетке. В пипетку, заполненную раствором электролита, помещается хлор-серебряный электрод, второй электрод размещается внеклеточно, в омывающей жидкости. Отличие электрической схемы от ранее описанной для двухэлектродной фиксации заключается в том что один и тот же электрод используется как для измерения разности потенциалов, так и для подачи тока. В основе установки, тем не менее, по-прежнему лежат усилитель мембранного потенциала, блок сравнения и монитор тока.

Читать еще:  Травы для потенции и простаты

На фото 1 показана часть такой установки.

Огромная сфера, часть которой видна на мониторе в центре фотографии — это клетка (ооцит лягушки Xenopus laevis), находящийся в данный момент на предметном столике микроскопа, к нему подведена patch-пипетка, ее диаметр у носика — около 3 микрон. После установления гигаомного контакта она изолирует фрагмент мембраны площадью приблизительно 7 мкм 2 , и если в этом фрагменте окажутся ионные каналы, их ток можно будет записывать.

Измерение трансмембранного потенциала

Обычно мембранный потенциал обозначают как Dj, представляющий разность потенциалов внутренней и наружной поверхности мембраны

Прогресс в исследовании биопотенциалов обусловлен:

1) разработкой микроэлектродного метода внутриклеточно­го измерения потенциалов;

2) созданием специальных усилителей биопотенциалов (УПТ);

3) выбором удачных объектов исследования крупных клеток и среди них гигантского аксона кальмара. Диаметр аксона кальмара достигает 0,5 мм, что в 100 — 1000 больше, чем диа­метр аксонов позвоночных животных, в том числе человека. Гигантские, в сравнении с позвоночными, размеры аксона этого проворного и ловкого головоногого моллюска — имеют большое физиологическое значение — обеспечивают быструю передачу нервного импульса по нервному волокну (слайд 2).

Для биофизики гигантский аксон кальмара послужил вели­колепным модельным объектом для изучения биопотенциалов (недаром выдвигались предложения поставить памятник каль­мару — животному, которому так многим обязана наука, подоб­но существующим памятникам лягушке в Париже и собаке под С. -Петербургом).

В гигантский аксон кальмара можно ввести микроэлектрод, не нанеся аксону значительных повреждений.

Микроэлектродный метод дал возможность измерить биопо­тенциалы не только на гигантском аксоне кальмара, но и на клет­ках нормальных размеров: нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других.

Однако, несмотря на преимущества и достаточную простоту, этот способ применим лишь для плоских модельных мембранных систем и некоторых крупных клеток. Если нужно измерить потенциал на мембране либо протеолипосом, либо клеток или органелл, например митохондрий или хлоропластов, то метод прямого измерения потенциала не применим. Для этих случаев разработано несколько методов.

1. Распределение ионов в соответствии с уравнением Нернста. В систему добавляют ион, способный проникать через мембрану, и он перераспределяется между внешней средой и внутренним объемом в соответствии с уравнением Нернста. На этом принципе основано использование в качестве молекулярных зондов таких гидрофобных ионов, как ТФФ+ или 86Rb-валиномицин. Чтобы определить трансмембранный потенциал, нужно знать концентрацию иона внутри везикулы, органеллы или клетки, что нередко превращается в серьезную проблему. Ошибки в измерении мембранного потенциала могут, в частности, возникнуть, если большие количества молекул-зондов связываются с мембранами клетки или если неправильно определен внутренний объем.

2. Спин-меченные ЭПР-зонды. Для этой цели используют несколько зондов — гидрофобных ионов, к которым ковалентно пришита парамагнитная нитроксильная группа. Концентрацию зонда, связанного с мембраной, легко определить из спектра ЭПР; при образовании на мембране потенциала зонд перераспределяется между фазами, и по изменению его концентрации в мембране можно оценить величину разности потенциалов. Изменение концентрации мембраносвязанного зонда обусловлено тем, что для внутривезикулярного пространства отношение площади поверхности к объем гораздо больше, чем для внешнего раствора.

3. Оптические молекулярные зонды. Спектральные характеристики многих оптических зондов зависят от трансмембранного потенциала. Наиболее распространенные это флуоресцентные производные мероцианина, оксонола и цианиновые красители. Все эти соединения связываются с мембраной, и, по-видимому, в основе их реакции на изменения трансмембранного потенциала может лежать несколько механизмов. Чаще всего это взаимодействие электрического диполя, каким является зонд, с электрическим полем приводит к изменению ориентации диполя в биослое. В ряде случаев изменение степени агрегации зонда в бислое влечет за собой изменение квантового выхода флуоресценции. Большинство зондов применяют для определения трансмембранного потенциала имеющего знак минус внутри везикулы, однако некоторые красители, например оксонолы, используются при обратной поляр ности потенциала.

К зондам другого типа, спектр поглощения которых чувствителен к трансмембранному потенциалу, относятся соединения стирольной природы, образующие в мембране конъюгированные структуры. Изменение их спектров поглощения при наложе­нии потенциала обусловлено так называемым явлением электрохромизма. Переход молекулы зонда из основного состояния в возбужденное при поглощении кванта света сопровождается перераспределением электронов. На энергию электронного перехода влияет градиент потенциала, вектор которого параллелен направлению этого смещения заряда. Подобные электрохромные изменения спектра наблюдаются также для природных пигментов фотосинте­тических мембран — каротиноидов. Преимущество зондов этого типа состоит в том, что соответствующие реакции происходят очень быстро и не зависят от степени агрегации или распреде­ления зонда. Все эти свойства делают такие зонды особенно полез­ными для быстрых кинетических измерений.

Ссылка на основную публикацию
Adblock
detector