4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Изменения трансмембранного потенциала

Основные представления о клеточной электрофизиологии сердца

Микроэлектрод, введенный внутрь живой клетки миокарда, в состоянии покоя регистрирует небольшой отрицательный электрический потенциал, в то время как вне клетки потенциал имеет положительную величину.

Этот так называемый трансмембранный потенциал покоя, или диастолический потенциал, в различных участках сердца неодинаков и колеблется от — 50 до — 95 мВ. Наличие потенциала покоя обусловлено 30-кратной разницей содержания ионов калия внутри клетки и во внеклеточной жидкости.

Во время возбуждения внутриклеточный потенциал становится на короткое время положительным и достигает почти +20 мВ, а затем постепенно возвращается к исходной величине. Это биоэлектрическое явление называется трансмембранным потенциалом действия.

Возбуждающий импульс от естественного водителя ритма или от искусственного источника электроэнергии уменьшает отрицательность потенциала покоя до определенного критического уровня, называемого пороговым потенциалом.

Для большинства миокардиальных клеток он составляет около — 65 мВ (цит. по В. Hoffman, P. Kreinfild, 1962). После достижения этого уровня отрицательный потенциал неудержимо уменьшается. Передача импульса (тока действия, потенциала действия) происходит от клетки к соседней клетке, которая до этого находилась в невозбужденном (недеполяризованном) состоянии. Изменения трансмембранного потенциала разделяют на пять фаз.

Фаза 0 представляет собой быстро протекающую деполяризацию клетки, т. е. уменьшение величины отрицательного внутриклеточного потенциала до нулевого значения, а затем переход его в положительный. Деполяризация клетки связана с увеличением проницаемости клеточной мембраны для ионов натрия, содержание которого внутри клетки в состоянии покоя значительно меньше, чем в межклеточной жидкости.

В результате происходит очень быстрое выравнивание концентрации натрия по обе стороны клеточной мембраны путем переноса его по специальным каналам внутрь клетки. В это же время регистрируется медленный выход ионов калия из клетки. Вершина импульса совпадает с максимальной концентрацией натрия внутри клетки. В эту фазу, по некоторым данным, в клетку по кальциевым каналам поступает также небольшое количество ионов кальция.

Фазы 1 — 3 представляют стадию реполяризации клетки, которая наступает сразу после деполяризации.

Фаза 1 — ранняя быстрая реполяризация — на рисунке проявляется коротким участком кривой, направленной круто вниз. Возникновение этой фазы обусловлено быстрым переносом через каналы внутрь клетки ионов хлора.

Схема трансмембранного потенциала миокарда желудочков

Схема трансмембранного потенциала миокарда желудочков:

0 — фаза быстрой деполяризации;
1 — фаза ранней быстрой реполяризации;
2 — плато или медленная деполяризация;
3 — заключительная фаза реполяризации;
4 — потенциал покоя;
ПП — пороговый потенциал.

Фаза 2 реполяризации, или плато, характеризуется относительно медленно протекающим процессом восстановления отрицательного внутриклеточного потенциала. Эта фаза регистрируется во всех клетках миокарда и проводящей системы сердца, за исключением синусового и атриовентрикулярного узлов.

Образование плато объясняется в основном медленным переносом в клетку ионов кальция и частично натрия, а также продолжающимся вхождением калия.

В течение этой фазы вне клетки имеется высокая концентрация ионов кальция и натрия. Плато потенциала действия переходит в фазу 3, представляющую вновь быстро нарастающий отрицательный потенциал. В эту фазу содержание внутриклеточных ионов, особенно калия, достигает уровня, характерного для потенциала покоя.

Все три фазы реполяризации хорошо выделяются в пучке Гиса, волокнах Пуркинье, миокардиальных волокнах предсердий и желудочков. В клетках синусового и предсердно-желудочкового узла различить их невозможно, так как они плавно переходят друг в друга.

Схемы трансмембранных потенциалов проводящей системы и миокарда

Схемы трансмембранных потенциалов проводящей системы и миокарда:

А — трансмембранный потенциал синусового узла;
Б — миокарда предсердий;
В — предсердно-желудочкового узла;
Г — миокарда желудочков;
0, 1, 2, 3, 4
фазы трансмембранного потенциала клеток;
ПП — пороговый потенциал.

Фаза 4 (потенциал покоя, диастолический потенциал) регистрируется во всех возбудимых структурах сердца, за исключением клеток водителей ритма, в виде горизонтальной линии, отражающей, по-видимому, сбалансированность переноса ионов в обоих направлениях.

В клетках водителя ритма сердца на протяжении всего диастолического периода постепенно уменьшается потенциал покоя, что обусловлено выходом из этих клеток небольшого количества калия.

Такое постепенное уменьшение потенциала покоя получило название медленной спонтанной деполяризации, которая продолжается до тех пор, пока уменьшение величины трансмембранного потенциала не достигнет уровня порогового потенциала. Именно медленная спонтанная деполяризация является основным электрофизиологическим механизмом, обеспечивающим функцию автоматизма синусового узла.

Фаза 0 деполяризации в клетках синусового и предсердно-желудочкового узла протекает более медленно, чем в других тканях сердца, что связано с замедленным током ионов. Однако в очагах повреждения миокарда может произойти частичная деполяризация мембраны клеток, инактивация переноса ионов натрия, и они приобретают свойства медленно деполяризующихся клеток или клеток с медленным ответом.

В результате образуется эктопический очаг возбуждения. Кроме того, ткани с зависимой от медленного тока ионов фазой 0 деполяризации предрасположены к возникновению однонаправленной блокады проведения импульса, что является одним из условий для повторного входа волны возбуждения и возникновения тахикардий.

Таким образом, в настоящее время большое значение для возникновения нарушений ритма придается натриевой системе (натриевые каналы, перенос ионов натрия через клеточную мембрану), а также медленному току ионов внутрь клетки. Исходя из этих представлений, аритмии могут быть прерваны при дальнейшем угнетении натриевой системы, при подавлении медленного тока ионов внутрь клетки в эктопическом очаге либо в результате реактивации натриевой системы [Arnsdorf М. F., 1977].

«Пароксизмальные тахикардии», Н.А.Мазур

Электрофизиологические свойства сердца включают: образование импульса (автоматизм), возбудимость, проводимость. Клетки сердца разделяются на две группы, одна из которых обладает свойством автоматизма, другая — не имеет его. Специализированная проводящая система состоит из большого числа клеток первой группы, сократительный миокард их не содержит и поэтому в норме не обладает свойством автоматизма. Автоматизм — это способность клетки (или…

Возбудимость — свойство ткани развивать ответ на импульс (раздражение). В миокарде это свойство проявляется в форме сокращения его волокон и проведения импульса. Возбудимость миокарда резко отличается в различные периоды сердечного цикла, что обусловлено неодинаковой его рефрактерностью. Рефрактерный период представляет собой часть сердечного цикла, в течение которого сердце не возбуждается либо демонстрирует измененный ответ. Его разделяют…

Проводимость — свойство клеток миокарда и проводящей системы сердца распространять импульс возбуждения на окружающие их клетки. Цитоплазма клеток и межклеточная жидкость в миокарде являются хорошим электропроводником, так как обладают небольшим электрическим сопротивлением. Поэтому импульс от водителя ритма легко воздействует на мембраны рядом расположенных клеток и вызывает возникновение в них потенциала действия, что в конечном итоге…

Для объяснения механизма возникновения аритмий выдвинуты две основные теории: активация эктопического очага возбуждения, циркуляция импульса возбуждения. Активация эктопического очага возбуждения. В соответствии с этой теорией преждевременный импульс возникает в тех случаях, когда в эктопическом очаге. под влиянием определенных причин внутриклеточный потенциал достигает пороговой величины и вызывает возбуждение раньше, чем это должно было бы произойти под…

Общий ствол начинается от соединительной зоны предсердно-желудочкового узла (av junction) и, не прерываясь, переходит в ножки пучка, а затем в волокна Пуркинье. Длина общего ствола не превышает 2 см, толщина — 0,4 см. Выделяют две ножки пучка Гиса — правую и левую. Правая ножка состоит из волокон, располагавшихся в нижней части пучка Гиса, которые распространяются…

Изменения трансмембранного потенциала.

Если мы с помощью микроэлектродов измерим разность потенциалов между наружной и внутренней поверхностью клеточной мембраны, как это показано на рисунке, то зарегистрируем так называемый трансмембранный потенциал покоя (ТМПП), имеющий отрицательную величину, в норме составляющую около —90 mV.

При возбуждении клетки резко изменяется проницаемость ее стенки по отношению к ионам различных типов. Это приводит к изменению ионных потоков через клеточную мембрану и, следовательно, к измене­нию величины самого ТМПП. Кривая изменения трансмембранного потенциала во время возбуждения получила название трансмембранного потенциала действия (ТМПД).

Различают несколько фаз ТМПД миокардиальной клетки.

Фаза 0. Во время этой начальной фазы возбуждения — фазы депо­ляризации — резко увеличивается проницаемость мембраны клетки для ионов Na + , которые быстро устремляются внутрь клетки (быст­рый натриевый ток). При этом, естественно, меняется заряд мембра­ны: внутренняя поверхность мембраны становится положительной, а наружная — отрицательной. Величина ТМПД изменяется от -90 mV до +20 mV, т.е. происходит реверсия заряда — перезарядка мембраны. Продолжительность этой фазы не превышает 10 мс.

Фаза 1. Как только величина ТМПД достигнет примерно +20 mV, проницаемость мембраны для Na + уменьшается, а для СГ увеличивается. Это приводит к возникновению небольшого тока отрица­тельных ионов СГ внутрь клетки, которые частично нейтрализуют избыток положительных ионов Na + внутри клетки, что ведет к неко­торому падению ТМПД примерно до 0 или ниже. Эта фаза носит название фазы начальной быстрой реполяризации.

Фаза 2. В течение этой фазы величина ТМПД поддерживается при­мерно на одном уровне, что приводит к формированию на кривой ТМПД своеобразного плато. Постоянный уровень величины ТМПД поддерживается при этом за счет медленного входящего тока Са 2+ и Na + направленного внутрь клетки, и тока К + из клетки. Продолжительность этой фазы велика и составляет около 200 мс. В течение фазы 2 мышечная клетка остается в возбужденном состоянии, начало ее характеризуется деполяризацией, окончание — реполяризацией мембраны.

Фаза 3. К началу фазы 3 резко уменьшается проницаемость кле­точной мембраны для Na + и Са 2+ и значительно возрастает прони­цаемость ее для К + Поэтому вновь начинает преобладать переме­щение ионов К + наружу из клетки, что приводит к восстановлению прежней поляризации клеточной мембраны, имевшей место в со­стоянии покоя: наружная ее поверхность вновь оказывается заря­женной положительно, а внутренняя поверхность — отрицательно.

ТМПД достигает величины ТМПП. Эта фаза носит название фазы конечной быстрой реполяризации.

Фаза 4. Во время этой фазы ТМПД, называемой фазой диастолы, происходит восстановление исходной концентрации К + Na + , Са 2+ СГ соответственно внутри и вне клетки благодаря действию «Na + -K + -Hacoca». При этом уровень ТМПД мышечных клеток оста­ется на уровне примерно -90 mV.

2. Как заряжена наружная поверхность клеточной мембраны:

а) невозбужденной мышечной клетки? б) клетки, находящейся в состоянии деполяризации? в) клетки, находящейся в состоянии реполяризации?

Наружная поверхность клеточной мембраны невозбужденной мышечной клетки заряжена положительно. Заряд обусловлен различной концентрацией ионов натрия и калия снаружи и внутри клетки. Свыше 90% ионов, расположенных снаружи мембраны, — это положительно заряженные ионы натрия и отри­цательно заряженные ионы хлора. Внутри клетки находятся глав­ным образом ионы калия (положительные ионы), причем отрица­тельными ионами являются разнородные органические, преимущественно белковые, молекулы. Концентрация ионов натрия почти в 10 раз больше снаружи клетки, а концентрация ионов калия — почти в 30 раз больше внутри клетки.

Наружная поверхность мембраны клетки, находящейся в состоянии деполяризации заряжена отрицательно. В процессе деполяризации ток ионов натрия совпадает с концентрационным градиентом, и ионы натрия проникают через мембрану в клетку. Проникая внутрь клетки, натрий вносит положительные заряды, а наружная поверхность мембраны становиться отрицательно заряженной.

Наружная поверхность мембраны клетки, находящейся в состоянии реполяризации заряжена положительно. Приток ионов натрия в клетку сопровождается выходом ионов калия из клетки, что также способствует процессу деполяризации. В тот момент, когда выход ионов калия из клетки начинает превы­шать ток ионов натрия в клетку, начинается процесс восстановле­ния, или угасания возбуждения, или реполяризации. Ток ионов калия из клетки способствует восстановлению внутри клетки пер­воначального положительного потенциала.

Дата добавления: 2014-12-29 ; просмотров: 2328 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Изменения трансмембранного потенциала

Величину трансмембранного потенциала лучше всего измерять с помощью двух электродов, помещенных по разные стороны мембраны. Однако этот способ применим лишь для плоских модельных мембранных систем и некоторых крупных клеток. Обычно же приходится измерять потенциал на мембране либо протеоли-посом, либо клеток или органелл, например митохондрий или хло-ропластов. Для этих случаев разработано несколько методов.

Распределение ионов в соответствии с уравнением Нернста. В систему добавляют ион, способный проникать через мембрану, и он перераспределяется между внешней средой и внутренним объемом в соответствии с уравнением Нернста. На этом принципе основано использование в качестве молекулярных зондов таких гидрофобных ионов, как ТФФ + или 86 кЬ-валиномицин. Чтобы определить трансмембранный потенциал, нужно знать концентрацию иона внутри везикулы, органеллы или клетки, что нередко превращается в серьезную проблему. Ошибки в измерении Д* могут, в частности, возникнуть, если большие количества зонда связываются с мембранами клетки или если неправильно определен внутренний объем.

Спин-меченные ЭПР-зонды. Для этой цели используют несколько зондов — гидрофобных ионов, к которым ковалентно пришита парамагнитная нитроксильная группа. Концентрацию зонда, связанного с мембраной, легко определить из спектра ЭПР; при образовании на мембране потенциала зонд перераспределяется между фазами, и по изменению его концентрации в мембране можно оценить величину Д*. Изменение концентрации мембраносвязанного зонда обусловлено тем, что для внутривезику-лярного пространства отношение площади поверхности к объему гораздо больше, чем для внешнего раствора.

Оптические молекулярные зонды. Спектральные характеристики многих оптических зондов зависят от трансмембранного потенциала. Из наиболее распространенных назовем флуоресцентные производные мероцианина, оксонола и цианиновые красители. Все эти соединения связываются с мембраной, и, по-видимому, в основе их реакции на изменения трансмембранного потенциала может лежать несколько механизмов. Чаще всего взаимодействие электрического диполя, каким является зонд, с электрическим полем приводит к изменению ориентации диполя в бислое. В ряде случаев изменение степени агрегации зонда в бислое влечет за собой изменение квантового выхода флуоресценции. Большинство зондов применяют для определения трансмембранного потенциала, имеющего знак минус внутри везикулы, однако некоторые красители, например оксонолы, используются при обратной полярности потенциала.

К зондам другого типа, спектр поглощения которых чувствителен к трансмембранному потенциалу, относятся соединения стирольной природы, образующие в мембране конъюгированные структуры. Изменение их спектров поглощения при наложении потенциала обусловлено так называемым явлением электрохро-мизма. Переход молекулы зонда из основного состояния в возбужденное при поглощении кванта света сопровождается перераспределением электронов. На энергию электронного перехода влияет градиент потенциала, вектор которого параллелен направлению этого смещения заряда. Подобные электрохромные изменения спектра наблюдаются также для природных пигментов фотосинтетических мембран — каротиноидов. Преимущество зондов этого типа состоит в том, что соответствующие реакции происходят очень быстро и не зависят от степени агрегации или распределения зонда. Все эти свойства делают такие зонды особенно полезными для быстрых кинетических измерений.

КОНЦЕПЦИЯ ЭНЕРГИЗОВАННОЙ МЕМБРАНЫ

Термин «энергизованная мембрана» трактуется обычно довольно широко, но в действительности он означает лишь, что поток ионов через бислой может использоваться для совершения работы. Чаще всего ионный поток создают протоны, и разность электрохимических потенциалов протонов между двумя разделенными бислоем фазами называется протондвижущей силой.

— разность электрохимических потенциалов протонов, выраженная в Дж/моль; частное от деления этой величины на постоянную Фарадея будет иметь размерность мВ.

А* = относительно наружного раствора,

ДрН = относительно наружного раствора.

Протондвижущая сила является мерой изменения свободной энергии при переносе протонов с одной стороны мембраны на другую. В митохондриях и фотосинтетических системах за счет протондвижущей силы происходит синтез АТР, но она может использоваться и системами транспорта растворенных веществ. Все сказанное выше детально рассматривается в рамках хемиосмотической теории.

Для нахождения Дн, нужно знать как Д*, так и ДрН. Методы определения Д* мы обсудили выше. ДрН обычно оценивают из данных по распределению по обе стороны мембраны слабых кислот или оснований. Их нейтральные формы проникают через липидный бислой, а непроникающие заряженные формы накапливаются в зависимости от рН с той или другой стороны мембраны. Можно использовать для этой цели как радиоактивные производные, так и оптические зонды. Один из наиболее часто используемых для измерения ДрН зондов — 9-аминоакридин — аккумулируется внутри везикул с кислым содержимым, что ведет к тушению флуоресценции зонда.

Мембранный потенциал

Различия в концентрации ионов на противоположных сторонах клеточной мембраны приводят к напряжению, названному мембранным потенциалом. Много ионов имеют градиент концентрации поперек мембраны, включая калий (K+), который является в высокой внутренней части и низкой концентрации вне мембраны. Натрий (Na+) и хлорид (Замкнутый–) ионы — при высоких концентрациях во внеклеточной области, и низких концентрациях во внутриклеточных областях. Эти градиенты концентрации обеспечивают потенциальную энергию вести формирование мембранного потенциала. Это напряжение установлено, когда мембрана имеет проходимость к одному или более ионам. В самом простом случае, иллюстрированном здесь, если мембрана выборочно водопроницаема к калию, они положительно обвиняли, что ионы могут распространить вниз градиент концентрации к внешней стороне ячейки, оставляя позади неданные компенсацию отрицательные обвинения. Это разделение обвинений-, каков вызывает мембранный потенциал. Отметьте, что оптовые решения любой стороны мембраны electo-нейтральны. Аналогично, система в целом нейтральна гальваностереотипом. «Неданные компенсацию» положительные обвинения вне ячейки, и неданных компенсацию отрицательных обвинений в ячейке, физически выстраиваются в линию на мембранной поверхности и привлекают друг друга поперек мембраны. Таким образом, мембранный потенциал физически расположен только в непосредственной близости мембраны. Это — разделение этих обвинений поперек них мембрана, которая является основанием мембранного напряжения. Отметьте также, что эта диаграмма — только приближение ионных вкладов в мембранный потенциал. Другие ионы, включая натрий, хлорид, кальций и другие играют более незначительную роль, даже при том, что они имеют сильные градиенты концентрации, потому что они более ограничили проходимость чем калий. Ключ: Синие пятиугольники — ионы натрия; Фиолетовые площади — ионы калия; Желтые круги — ионы Choloride; Оранжевые прямоугольники — Анионы (они являются результатом разнообразия источников, включая белки). Большая фиолетовая структура со стрелкой представляет трансмембранный канал калия и руководство чистого движения калия.

Мембранный потенциал (реже — трансмембранный потенциал) — разность электрических потенциалов между растворами электролитов, разделенных проницаемой мембраной.

Роль мембраны в первую очередь состоит в создании препятствия к смешиванию растворов, расположенных по её разные стороны. Мембрана может быть либо электрически индифферентной, диффузия через которую возможна для всех частиц, имеющихся в растворе; либо полупроницаемой (активной), через такую мембрану некоторые частицы пройти не могут (см. осмос).

  • Равновесный мембранный потенциал в начале ХХ века часто именовали потенциалом Доннана

Введение Править

Мембранный потенциал (также трансмембранное потенциальное или мембранное напряжение) — различие в электрическом потенциале между интерьером и внешностью биологической клетки. Все клетки животных окружены плазменной мембраной, составленной из двойного слоя липида с разнообразием типов белков, вложенных в это. Мембранный потенциал возникает прежде всего из взаимодействия между мембраной и действиями двух типов трансмембранных белков, вложенных в плазменную мембрану. Мембрана служит и изолятором и барьером распространения к движению ионов. Белки транспортера/насоса иона активно выдвигают ионы поперек мембраны, чтобы устанавливать градиенты концентрации поперек мембраны, и каналы иона позволяют ионам перемещать поперек мембраны вниз те составляющие концентрации. Этот процес известен как облегченное распространение. В самом фундаментальном примере этого, транспортер иона Na+/K+-ATPase качает ионы натрия от внутренней части до внешней стороны, и ионов калия от внешней стороны до внутренней части клетки. Это устанавливает два градиента концентрации: градиент для натрия, где его концентрация намного выше снаружи чем в ячейке, и градиенте для калия, где его концентрация намного выше в ячейке чем снаружи.

Трансмембранные отборные калием каналы утечки позволяют ионам калия распространяться поперек мембраны, вниз градиента концентрации, который был установлен ATPase, создавая разделение обвинения, и таким образом, напряжение, поперек мембраны.

Трансмембранные отборные калием каналы утечки позволяют ионам калия распространяться поперек мембраны, вниз градиента концентрации, который был установлен ATPase, создавая разделение обвинения, и таким образом, напряжение, поперек мембраны. В почти во всех случаях, ион, который определяет так называемый «отдыхающий» мембранный потенциал ячейки, является калием, хотя другие ионы действительно вносят вклад большим количеством незначительных способов. В соответствии с соглашением, признак мембранного потенциала определяется как напряжение внутри относительно основания вне клетки. В случае калия, его распространение вниз его градиента концентрации, к внешней стороне ячейки, создает трансмембранное напряжение, которое является отрицательным относительно внешней стороны ячейки, и типично–60 к–80 милливольтам (милливольт) в амплитуде.

Фактически все eukaryotic клетки (включая клетки от животных, заводов, и грибов) поддерживают трансмембранный потенциал отличный от нуля, обычно с отрицательным напряжением в интерьере клетки по сравнению с внешностью клетки. Мембранный потенциал имеет две основных функции. Сначала он позволяет клетке функционировать как батарея, обеспечивая власть управления разнообразием «молекулярных устройств» вложенных в мембрану. Во вторых, в электрически легковозбудимых клетках, типа нейронов и клеток мускула, это используется для того, чтобы передать сигналы между различными частями клетки. Сигналы произведены, открывая или закрывая каналы иона однажды в мембране, производя местное изменение в мембранном потенциале, который заставляет электрический ток течь быстро к другим пунктам в мембране.

В нелегковозбудимых клетках, и в легковозбудимых клетках в их местах основания, мембранный потенциал проведен по относительно устойчивой ценности, названной отдыхающим потенциалом. Для нейронов, типичные ценности отдыхающего потенциального диапазона от–70 до–80 милливольт; то есть, интерьер клетки имеет отрицательное напряжение основания немного меньше, чем одна десятая вт. Открытие и закрытие каналов иона могут вызвать отъезд от отдыхающего потенциала. Это называют деполяризацией, если внутреннее напряжение становится более уверенным (скажем от-70 милливольтов до-60 милливольтов), или гиперполяризация, если внутреннее напряжение становится более отрицательным (говорят от-70 милливольтов до-80 милливольтов). В легковозбудимых клетках, достаточно большая деполяризация может вызвать потенциал действия, в котором мембранный потенциал изменяется быстро и значительно в течение короткого времени (на заказе в пределах от 1 — 100 миллисекунд), часто полностью изменяя его полярность. Потенциалы действия произведены активацией определенных каналов иона напряжения-gated.

В нейронах, факторы, которые влияют на мембранный потенциал, разнообразны. Они включают многочисленные типы каналов иона, некоторые, которые являются химически gated и некоторые, которые являются напряжением-gated. Поскольку каналами иона напряжения-gated управляет мембранный потенциал, в то время как мембранный сам потенциал — под влиянием этих тех же самых каналов иона, петли обратной связи, которые учитывают сложную временную динамику, возникают дополнительно

Читать еще:  Продукты для повышения потенции у мужчин
Ссылка на основную публикацию
Adblock
detector