0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гемодинамика сердца общая характеристика и показатели

Система кровообращения. Физиология сердца. Гемодинамическая структура сердца

Теория по нормальной физиологии на тему: Система кровообращения. Физиология сердца. Гемодинамическая структура сердца. Сердечный цикл, фазы…

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Функция сердца — насосная .

«Правое сердце» — качает венозную кровь , «левое сердце» — артериальную кровь .

Сокращение — систола , расслабление — диастола — заполнение камер сердца кровью.

Строение сердца

Стенка сердца состоит из 3-х слоев:

  • эпикард (наружный),
  • миокард (средний),
  • эндокард (внутренний).

Клапаны

Механическая работа сердца — необходима согласованная работа клапанов.

Атриовентрикулярные клапаны (в левом желудочке — митральный, в правом желудочке — трехстворчатый) — препятствуют обратному забросу (регургитации) крови в предсердия во время систолы желудочков.

Аортальный и легочный клапаны расположены у основания крупных артериальных стволов, препятствуют регургитации крови в желудочки при диастоле (полулунные клапаны).

Миокард состоит из отдельных клеток, но функционирует как единое целое — функциональный синцитий.

Миокард

Мускулатура — поперечно-полосатая.

Миокард предсердий и желудочков не соединяется, h=2-3 мм и состоит из 2-х слоев : наружный — циркулярный (общий для правого и левого предсердия) и внутренний — продольный (отдельный для правого и левого предсердия).

h (толщина левого желудочка) = 10-12 мм, h (правого желудочка) = 3-6 мм.

Желудочки имеют 3 мышечных слоя:

  • внутренний — продольный — во время систолы уменьшает продольный диаметр сердца,
  • средний — из круговых волокон — уменьшает поперечный диаметр сердца,
  • поверхностный — объединяет и левый и правый желудочки, 1,5 раза он окружает желудочки и сокращение этого слоя обеспечивает движение сердца вправо и вперед.

По данным электронной микроскопии миокард состоит из отдельных клеток. Местами контакта этих клеток является вставочные диски. Участок диска, где мембрана соседних клеток плотно примыкают друг другу, сливаясь в единый листок, называется нексусом .

Благодаря наличию нексусов волокна миокарда сокращаются одновременно .

Функция сердечно-сосудистой системы

Основное назначение сердечно-сосудистой системы — обеспечение кровообращения, то есть постоянная циркуляция крови в замкнутой системе сердца.

Функции сердечно-сосудистой системы:

  • транспорт веществ, необходимых для обеспечение функций клеток организма;
  • доставка к клеткам организма химических веществ, регулирующих их обмен;
  • отвод от клеток их метаболитов;
  • гуморальная связь органов и тканей между собой;
  • доставка тканям средств защиты;
  • удаление вредных веществ из организма;
  • обмен тепла в организме.

Нагнетательная функция сердца основана на чередовании расслабления (диастолы) и сокращения (систолы) желудочков.

От сердца кровь уходит по артериальным сосудам, а приходят по венозным.

Деятельность сердца: сокращение сердца наблюдается вследствие периодически возникающих процессов возбуждения в сердечной мышце.

Просчет пульса — и есть количество ПД .

Для эффективной насосной деятельности нужна синхронная работа мышечных волокон миокарда.

Кардиомиоциты

  • типичные кардиомиоциты,
  • атипичные кардиомиоциты.

Типичные (клетки рабочего миокарда, сократительные):

  • 99% m миокарда,
  • много миофибрилл, митохондрий, развит ЭПР (Ca2+).

Атипичные — клетки проводящей системы, пейсмекерные: слабо развит сократительный аппарат, обладают автоматией.

Миокард обладает рядом свойств :

  • автоматия,
  • возбудимость,
  • проводимость,
  • сократимость,
  • рефрактерность.

Сердечный цикл

Это одно полное сокращение и расслабление всех камер сердца.

  • I фаза — систола предсердий — 0,1 с.
  • II фаза — систола желудочков — 0,33 с.
  • III фаза — общая пауза — 0,37 с.

Сердечный цикл длится 0,8 с. при 75 уд/мин .

I фаза

  • давление в левом предсердии — max=8-15 мм рт.ст. (сред. значение 5-7 мм рт.ст.);
  • давление в правом предсердии — max=3-8 мм рт.ст. (сред. значение 2-4 мм рт.ст.).

Во время систолы предсердий желудочки находятся в фазе диастолы, они наполнены кровью. Давление в них = 2-3 мм рт.ст. Давление в предсердиях больше, значит кровь поступает в желудочки.

Створчатые клапаны открыты. Просвет вен закрывается вследствие сокращения гладких мышц.

II фаза

II фаза — систола желудочков — 0,33 с.

Период напряжения (0,08 с)

Фаза асинхронного сокращения (0,05 с):

  • процесс возбуждения распространяется по миокарду желудочков;
  • давление в желудочках близок к 0;
  • постепенно сокращение охватывает все волокна миокарда;
  • давление в желудочках повышается;
  • кровь устремляется обратно в предсердия;
  • но кровь в предсердия не поступает, т.к. закрываются створчатые клапаны;
  • удар клапанов — возникает I или систолический тон.

Фаза изометрического сокращения (0,03 с):

  • не происходит укорочения волокон миокарда (и створчатые, и полулунные клапаны закрыты);
  • объем крови в желудочках остается постоянным;
  • длина волокон не меняется, но увеличивается напряжение;
  • левый желудочек округляется и силой ударяется о внутреннюю поверхность грудной клетки (сердечный толчок);
  • давление в желудочках становится выше давления в аорте и легочной артерии;
  • в левом желудочке достигает 70-80 мм рт.ст., в правом — 15-20 мм рт.ст.;
  • кровь из желудочков устремляется в сосуды.

Период изгнания (0,25 с)

  • протосфигмический интервал — 0,005 с.;
  • фаза быстрого изгнания — 0,1-0,12 с.:
    • давление в левом желудочке — 120-130 мм рт.ст.,
    • давление в правом желудочке — 25-39 мм рт.ст.;
  • фаза медленного изгнания — 0,13-0,15 с.

III фаза

III фаза — диастола желудочков — 0,47 с.

Период расслабления — 0,12 с.:

  • протодиастолический интервал — 0,04 с (закрытие полулунных клапанов — II тон сердца);
  • фаза изометрического расслабления — 0,08 с (длина волокон не меняется, давление в желудочках постепенно уменьшается при закрытых клапанах и становится чуть меньше, чем в предсердиях).

Происходит открытие створчатых клапанов и начинается период наполнения.

Период наполнения — 0,25 с

  • фаза быстрого наполнения — 0,08-0,09 с (колебания стенок желудочков вследствие быстрого притока крови к ним, следовательно — появление III тона сердца);
  • фаза медленного наполнения — 0,16-0,17 с (эта фаза гемодинамически не эффективна; при ЧСС=120-140 уд/мин она отсутствует).

На этом сердечный ритм заканчивается, но диастола желудочков продолжается еще 0,1 с.

Происходит систола предсердий (пресистола для желудочков).

Пресистола — 0,1 с

Активное наполнение желудочков кровью. Предсердия нагнетают в желудочки дополнительное количество крови — возникает IV тон сердца.

Интерсистолический интервал — 0,007 с.

Диастола необходима для:

  1. обеспечения исходной поляризации кардиомиоцитов (работа Na-K насоса),
  2. удаление Ca из саркоплазмы,
  3. ресинтез гликогена и АТФ,
  4. наполнение сердца кровью.

Снова начинается новый цикл деятельности желудочков.

Гемодинамическая функция сердца

Насосная функция сердца обусловлена :

  • ритмично возникающими сокращениями миокарда,
  • строгой координацией сокращения предсердий и желудочков,
  • синхронной работой правого и левого отделов сердца,
  • надежной работой клапанов сердца,
  • особенностями физиологических свойств миокарда.

Показатели работы сердца

Сокращение миокарда

Сокращение сердца запускается ПД (потенциалом действия) .

Сократительные белки:

  • актин (тонкие нити),
  • миозин (толстые нити саркомера).

Модуляторные белки:

  • тропомиозин,
  • тропонин.

Сокращение миокарда:

Тропонин связывается с Ca2+ (из ЭПР) -> изменяется конформация тропонин-тропомиозинового комплекса -> открываются актиновые центры -> взаимодействие актиновых и миозиновых нитей (сокращаются).

Одновременно:

Стимулируется АТФ-ой активности актомиозиновых мостиков -> распад АТФ -> выделение энергии для скольжения нитей относительно друг друга -> сокращение миофибрилл.
При отсутствии Ca2+ сокращения не будет.

Гемодинамика сердца общая характеристика и показатели

План

Читать еще:  Физиотерапия простаты отзывы

1. Сосудистая система в организме, ее основные функции. Классификация сосудов.

2. Гемодинамика. Факторы, определяющие движение крови по сосудам. Основные показатели гемодинамики.

3. Кровяное давление и факторы, влияющие на его величину. Давление крови в разных отделах сосудистого русла.

4. Нервные механизмы регуляции сосудистого тонуса.

Сосудистая система представляет набор, соединенных между собой, замкнутых сосудистых трубок различного диаметра, обеспечивающих кругооборот крови в последовательно подключенных и движение крови в параллельно подключенных сосудах. Непрерывное движение крови по сосудам обеспечивает основные функции системы кровообращения: транспорт газов и веществ к тканям, удаление метаболитов и поврежденных клеток, а также обмен тепла в организме.

В сосудистой системе выделяют три главных взаимосвязанных звена: артериальное (сосуды, идущие от сердца), венозное (сосуды, возвращающие кровь в сердце) и, связующее их, капиллярное.

По калибру сосудистую систему разделяют на зоны: макроциркуляции (включает крупные сосуды: аорту, артерии, вены) и микроциркуляции (включает мелкие сосуды: артериолы, капилляры и венулы).

По уровню давления сосудистая система разделяется на два отдела: сосуды высокого давления (артерии различных калибров, артериолы) и сосуды низкого давления (все венозные сосуды, начиная от посткапиллярных венул; малый круг кровообращения; капилляры).

Стенки кровеносных сосудов состоят из трех основных слоев : внутреннего (эндотелиального); среднего, представленного гладкомышечными клетками, коллагеновыми и эластическими волокнами; наружного, образованного рыхлой соединительной тканью, содержащей сосуды и нервы.

Сосуды, помимо диаметра, отличаются между собой строением среднего слоя:

1. В аорте икрупных артериях преобладают эластические и коллагеновые волокна (сосуды эластического типа), что обеспечивает их упругость и растяжимость.

2. В артериях среднего и мелкого калибра, а также в артериолах, прекапиллярах и венулах преобладают гладкомышечные элементы, обладающие высокой сократимостью (сосуды мышечного типа).

3. В средних и крупных венах содержатся мышцы с низкой сократительной активностью. Мелкие, средние и некоторые крупные вены имеют клапаны (больше всего их в венах нижних конечностей).

Не имеют клапанов вены головы, шеи, почек, легких, воротная вена. Между протоками крупных вен имеются венозные анастомозы, по которым кровь может оттекать в обход основного пути.

4. Капилляры лишены гладкомышечных клеток, а их стенка имеет один слой эндотелия, расположенный на базальной мембране.

Функциональная классификация сосудов, которую предложил Фолков, выделяет ряд последовательно включенных звеньев:

1. Буферные сосуды или сосуды «котла» (амортизирующие сосуды) включают сосуды эластического типа, к которым относятся аорта и крупные артерии (сонная, подвздошные).

Они запасают энергию, переданную сердцем во время систолы, в форме упругой энергии растянутой стенки и обеспечивают непрерывное движение крови во время диастолы желудочков.

2. Резистивные сосуды или сосуды сопротивления представлены сосудами мышечного типа, к которым относятся концевые артерии (средние и мелкие), а также артериолы.

Они оказывают сопротивление кровотоку, обеспечивая непрерывность движения крови по сосудам.

Просвет артериол может меняться за счет симпатических или парасимпатических влияний (увеличение просвета улучшает местное кровообращение).

Прекапиллярным сосудам сопротивления свойственна высокая степень внутреннего (миогенного) базального тонуса, который постоянно изменяется под влиянием местных физических и химических факторов.

За счет этого резистивные сосуды регулируют системное артериальное давление и местное (органное) кровообращение.

3. Обменные сосуды (капилляры) обеспечивают обмен веществ между кровью и тканями за счет механизмов фильтрации (20 л/сут) и реабсорбции (обратное всасывание — 18 л/сут).

Эти функции обеспечивают:

— однослойное строение стенки капилляров;

— малый диаметр капилляров, который – диаметру эритроцитов (что улучшает газообмен);

— большая сеть капилляров (общая длина капиллярного русла 100 тыс. км);

— маленькая линейная скорость движения крови (эритроцит находится в капилляре около 1 с)

4. Ёмкостные сосуды объединяют все венозное ложе и играют незначительную роль в создании общего сопротивления сосудов.

Но, обладая большой растяжимостью и эластичностью стенок, эти сосуды могут значительно изменять свою конфигурацию и диаметр и вмещать до 70-80% крови (за исключением венозной системы мозга, которые не выполняют емкостную функцию).

В органах-депо (в печени, селезенке, легких, подкожной клетчатке) кровь находится, в основном, в венах, образующих синусы и лакуны.

Необходимость и целесообразность доставки крови к органам и тканям быстро и по кратчайшим путям отразилась на строении транспортирующей (артериальной) системы, которая организована проще, чем венозная.

При этом число венозных сосудов на единицу площади большинства органов значительно превышает количество артериальных ветвей.

Гемодинамика – это закономерности движения крови по сосудистой системе.

Движение крови в последовательно соединенных сосудах, обеспечивающее ее кругооборот называют системной гемодинамикой.

Движение крови в параллельно подключенных к аорте и полым венам сосудистых руслах, благодаря которому органы получают необходимый объем крови, называют регионарной (органной) гемодинамикой.

В соответствии с законами гидродинамики движение крови определяется двумя силами:

1. Разностью давлений в начале и конце сосуда, что способствует продвижению жидкости (крови) по сосуду.

2. Гидравлическим сопротивлением, которое препятствует току жидкости.

Отношение разности давления к сопротивлению определяет объемную скорость тока жидкости и выражается уравнением: Q = (P1-P2)/R.

Отсюда следует, что количество крови, протекающей в единицу времени через кровеносную систему, тем больше, чем больше разность давлений в ее артериальном и венозном концах и чем меньше сопротивление току крови.

Давление в сосудистой системе создается работой сердца, которое выбрасывает определенный объем крови в единицу времени. Поэтому в артериях давление максимальное.

Так как давление в месте впадения полых вен в сердце близко к 0, то уравнение гидродинамики относительно системного кровотока. Можно записать в виде: Q = P/R, или Р = Q . R, т.е. давление в устье аорты прямо пропорционально минутному объему крови и величине периферического сопротивления.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда.

Любой из таких сосудов можно сравнить с трубкой, сопротивление которой определяется по формуле: R = 8ln/pr 4 , т.е. сопротивление сосуда прямо пропорционально его длине и вязкости, протекающей в нем жидкости (крови) и обратно пропорционально радиусу трубки (p — отношение окружности к диаметру).

Отсюда следует, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого самый маленький. Однако огромное количество капилляров включено в ток крови параллельно, поэтому их суммарное сопротивление меньше, чем суммарное сопротивление артериол. Пульсирующий ток крови, создаваемый работой сердца, выравнивается в кровеносных сосудах, благодаря их эластичности. Поэтому ток крови носит непрерывный характер.

Для выравнивания пульсирующего тока крови большое значение имеют упругие свойства аорты и крупных артерий. Во время систолы часть кинетической энергии, сообщенной сердцем крови, переходит в кинетическую энергию движущейся крови. Другая ее часть переходит в потенциальную энергию растянутой стенки аорты.

Потенциальная энергия, накопленная стенкой сосуда во время систолы, переходит при его спадении в кинетическую энергию движущейся крови во время диастолы, создавая непрерывный кровоток. Основными гемодинамическими показателями движения крови по сосудам являются объемная скорость, линейная скорость и скорость кругооборота.

Объемная скорость определяется количеством крови, проходящей через поперечное сечение сосуда за единицу времени. Так как отток крови от сердца соответствует ее притоку к сердцу, то объем крови, протекающий за единицу времени через суммарное поперечное сечение сосудов любого участка кровеносной систем, одинаков.

Объемную скорость кровотока отражает минутный объем кровообращения. Это то количество крови, которое выбрасывается сердцем за 1 минуту. Минутный объем кровообращенияв покое составляет 4,5-5 л и является интегративным показателем.

Читать еще:  Цикорий при аденоме простаты

Он зависит от систолического объема (то количество крови, которое выбрасывается сердцем за одну систолу, от 40 до 70 мл) и от частоты сердечных сокращений (70-80 в минуту).

Линейная скорость кровотока – это расстояние, которое проходит частица крови за единицу времени, т.е. это скорость перемещения частиц вдоль сосуда при ламинарном потоке. Кровоток в сосудистой системе в основном носит ламинарный (слоистый) характер. При этом кровь движется отдельными слоями параллельно оси сосуда.

Линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре она максимальная, а около стенки – минимальная. Это связано с тем, что на периферии особенно велико трение частиц крови о стенку сосуда.

При переходе одного калибра сосуда к другому диаметр сосуда меняется, что приводит к изменению скорости течения крови и возникновению турбулентных (вихревых) движений. Переход от ламинарного типа движения к турбулентному ведет к значительному росту сопротивления.

Линейная скорость также различна для отдельных участков сосудистой системы и зависит от суммарного поперечного сечения сосудов данного калибра. Она прямо пропорциональна объемной скорости кровотока и обратно пропорциональна площади сечения кровеносных сосудов: V = Q/pr 2 . Поэтому линейная скорость меняется по ходу сосудистой системы.

Так, в аорте она равна 50-40 см/c; в артериях – 40-20; артериолах – 10-0,1; капиллярах – 0,05; венулах – 0,3; венах – 0,3-5,0; в полых венах – 10-20 см/с. В венах линейная скорость кровотока возрастает, так как при слиянии вен друг с другом суммарный просвет кровеносного русла суживается.

Скорость кругооборота крови характеризуется временем, в течение которого частица крови пройдет большой и малый круги кровообращения. В среднем, это происходит за 20-25 с.

Глава 15 физиология сердца. Гемодинамика

Кровообращение обеспечивает все процессы метаболизма в организме человека и по­этому является компонентом различных функциональных систем, определяющих гомеостаз. Основой кровообращения является сердечная деятельность.

Функция сердца — резервуарная и нагнетательная: в период диастолы в нем накаплива­ется очередная порция крови, а во время систолы часть этой крови выбрасывается в боль­шой (аорту) или малый (легочную артерию) круги кровообращения. За 1 минуту у взросло­го человека выбрасывается из каждого желудочка в среднем 4,5—5,0 литров крови. Этот показатель носит название «минутный объем кровообращения» или «минутный объем кро­ви» (МОК). В расчете на площадь поверхности за 1 минуту сердце взрослого человека выбрасывает в каждый круг около 3 л/м 2 крови (МОК: 1,76 м 2 ). Этот показатель получил название «сердечный индекс».

В среднем за 70 лет жизни сердце совершает около 2600 млн. сокращений, перекачивая около 155 млн. л крови.

За весь период диастолы предсердия и желудочки наполняются кровью. Максимальный объем крови перед началом систолы желудочков составляет 140—180 мл. Этот объем по­лучил название «конечно-диастолический». Он характеризует максимальные возможности сердца как насоса. В период систолы из желудочков выбрасывается порция крови по 60—80 мл. Этот объем получил название «систолический объем». Чем он больше и чем чаще про­исходят сокращения сердца, тем выше производительность сердца как насоса. Например, если систолический объем — 70 мл, а ЧСС (число сердечных сокращений) за 1 минуту равно 70, то МОК — 4900 мл.

После изгнания крови в желудочке остается примерно 70 мл крови (или 140 — 70 = 70 мл.) Этот объем получил название «конечно-систолический объем». Он всегда имеется, т. е. сердце не способно выбросить всю содержащуюся в желудочке кровь. Конечно-систоли­ческий объем характеризует способность сердца увеличить свою производительность. При повышении сократимости сердца, например, под влиянием симпатической эфферентации возрастает систолический объем. Поэтому конечно-систолический объем принято делить на два отдельных объема: остаточный объем и резервный. Остаточный объем — это тот объ­ем, который остается в сердце даже после самого мощного сокращения. Резервный объем — это тот объем крови, который может выбрасываться из желудочка при усиленной его работе, в дополнение к систолическому объему в условиях покоя.

Систолический объем — важнейшая характеристика производительности сердца. (В ля-‘ тературе часто используют синоним «ударный объем» или «сердечный выброс».) Для нор­мирования этого показателя его рассчитывают на площадь тела, СО: 1,76 м 2 . Такой показа­тель называется ударным индексом. В норме он равен примерно 41 мл/м 2 у взрослого чело­века. Систолический объем новорожденных составляет примерно 3—4 мл. С учетом того, что ЧСС у новорожденных 140 уд/мин, в среднем МОК новорожденного равен 500 мл. Все указанные выше объемы представлены в таблице. |

Учитывая важность представленных показателей, особенно СО и МОК, в физиологии и практической медицине уже давно пытались объективно оценить эти показатели. Основная сложность — определить систолический объем. Если он известен, то по числу сердечных

Норма для взрослого

Норма для новорожденного

1. Конечно-диастолический (остаточный + резервный +систолический объемы)

2. Систолический объем— ударный объем — сердечный выброс

60—80 мл за систолу

3—4 мл за систолу

3. Ударный индекс — СО: 1,76 м кв.

4.Минутный объем кровообращения

5. Сердечный индекс — МОК: 1,76 м 2

6. Индекс кровообращения — МОК: 70 кг

сокращений можно рассчитать МОК. Применялись различные методы. Наиболее простой метод — расчетный. Так, известный физиолог Старр предложил проводить определение СО на основании замеров артериального давления и ЧСС. Формула Старра:

СО = 100 + 0,5 (пульсовое давление) — 0,6 (возраст, в годах) — 0,6 (диастолическое давление). Результат выражается в мл.

Например, если у 20-летнего человека АД = 120/80 мм рт. ст., то, по Старру, СО будет равен 100 + 0,5 х (120 — 80) — 0,5 х 20 — 0,6 х 80 = 100 + 20 — 12 — 48 = 60 мл.

Однако метод Старра в настоящее время из-за низкой объективности используется редко.

Наиболее точным методом определения МОК является метод А. Фика, основанный на определении количества кислорода, которое поступает в легкое за 1 минуту и разносится кровью к тканям. С этой целью определяется содержание кислорода в правом и левом отде­лах сердца. Например, в левом желудочке кровь содержит 200 мл кислорода на каждый литр крови, а правое предсердие, куда стекает кровь от тканей — содержит 120 мл кислоро­да на 1 литр крови. Следовательно, кровь, проходя через ткани, отдает 200 — 120 = 80 мл кислорода на каждый литр крови или 1 мл крови отдает 0,08 мл кислорода. При определе­нии установлено, что за 1 минуту испытуемый потребляет 400 мл кислорода. Для того чтобы весь этот объем разнести по тканям, требуется, чтобы левый желудочек за 1 минуту выбросил 400:0,08 = 5000 мл крови. Это и есть величина минутного объема кровотока. Зная число сокращений сердца за 1 минуту, можно рассчитать систолический объем. Например, если у человека за 1 минуту было совершено 100 сокращений, то СО равен 5000:100 = 50 мл. Метод Фика — один из самых точных методов. Но процедура получения крови из правого в левого сердца требует катетеризации отделов сердца, что достаточно сложно и небезо­пасно для жизни больного. Поэтому метод не получил большого распространения. Но он стал основой для разработки более простых объективных методов, в том числе методов разведения и методов, базирующихся на реографии.

Читать еще:  Рак простаты удалили яички

Для определения МОК и СО используют изотопы. Для этих целей в основном применя­ют альбумин, меченный радиоктивным йодом J 131, его вводят в кровь, а концентрацию это­го изотопа в крови определяют с помощью различной аппаратуры, например, радиоциркулографа, аппарата «Гамма» и других. При этом датчик ставится в 3—4 межреберье слева от яарастернальной линии (над проекцией левых и правых отделов сердца).

В последнее время большую популярность получил метод определения СО, основан­ный на использовании тетраполярной реографии — регистрация изменения сопротивления электрическому току, проходящему между электродами, которое обусловлено кровенапол­нением. Безопасность и простота метода позволяют широко применять его в условиях прак­тического здравоохранения.

Насосная функция сердца заключается в том, что сердце при­нимает определенную порцию крови (венозный возврат) и эту же порцию крови выталкивает в выходящие из желудочков сосу­ды. Производительность сердца определяется тем количеством крови, которое приходит к нему. Если приток отсутствует, то вы­брасывать сердцу нечего.

Оба сердца — правое и левое — работают как единое целое. При рассмотрении деятельности предсердий и желудочков сердца из дидактических соображений целе­сообразно сконцентрировать вни­мание на одной половине сердца-

В норме сердце совершает в среднем 70 ударов за 1 минуту. Это означает, что 1 сердечный цикл длится 60 с: 70 = 0,8 с.

Сердечный цикл состоит из систолы желудочков, систолы предсердий и диастолы (систола — это сокращение, диастола — расслабление).

Длительность систолы пред­сердий = 0,1 с, длительность сис­толы желудочков -0,33 с. Диа­стола у предсердий длится 0,7 с, у желудочков — 0,47 с. Таким об­разом, предсердия большую часть цикла (0,7 с) находятся в состоя­нии диастолы, а у желудочков пе­риод отдыха значительно меньше. Это имеет важное значение — вследствие большой нагрузки и малого периода отдыха желудоч­ки чаще, чем предсердия, подвер­гаются патологическим процес­сам (инфаркт миокарда, ишемическая болезнь сердца и т. д.).

Систола предсердий. Сокраще­ния предсердий начинаются при распространении возбуждения от синоатриального узла по миокардиоцитам предсердий, а также по пучкам. В процесс сокращения вовлекаются все миокардиоциты — и правого, и (чуть позже) ле-

вого предсердия. В результате сжимаются устья вен, впадающих в предсердия, повышается внутрипредсердное давление — в левом до 5—8 мм рт. ст., в правом — до 4—6 мм рт. ст., а в результате вся кровь, которая за время диастолы предсердия накопилась в нем, изгоняет­ся в желудочки: примерно за всю систолу предсердий, т. е. за 0,1 с в желудочки дополни­тельно входит около 40 мл крови, около 30% от конечно-диастолического объема. Благода­ря этому, во-первых, возрастает кровенаполнение желудочков, а во-вторых, создается сила, которая вызывает дополнительное растяжение миокардиоцитов желудочка.

После окончания систолы предсердий начинаются 2 процесса: в предсердиях в течение 0,7 с имеет место диастола, а в желудочках начинается систола.

Систола желудочков. Принято систолу желудочков делить на 2 периода — период напря­жения и период изгнания крови, а диастолу на 3 периода — протодиастолический период, период изометрического расслабления, период наполнения. Все периоды, за исключением протодиастолического и периода изометрического расслабления, делятся на отдельные фазы.

Итак, систола: периоды — фазы периодов,

диастола: периоды — фазы периодов.

Принятая в литературе классификация цикла «систола-диастола» желудочков дается в таком виде:

Гемодинамическая функция сердца.

Физиология сердечно-сосудистой системы. Физиология сердца, его нагнетающая функция. Сердечный цикл.

Микроструктура и физиологические свойства сердечной мышцы.

Мышечная ткань сердца состоит из отдельных клеток — миоцитов. Различают два вида миоцитов — сердечные проводящие миоцит (обеспечивают автоматизм) и сократительные миоциты (рабочая мускулатура).

Особенности физиологических свойств сердечной мышцы

Возбудимость

При частых раздражениях сердечная мышца в отличие от скелетных не дает тетануса. Если при раздражении скелетной мышцы каждый последующий импульс попадает в период расслабления, возникает зубчатый тетанус, а если в период укорочения — гладкий. Совсем по-иному отвечает сердечная мышца: если последующие раздражения совпадают с периодом сокращения, или систолой, то они не будут воспроизводиться, т.е. сердце на них не реагирует; если в период расслабления (диастолы),— то вместо ожидаемого зубчатого тетануса сердечная мышца ответит только одним внеочередным сокращением, называемым экстрасистолой.

Проводимость

Возбуждение в сердечной мышце распространяется в различных направлениях от места его возникновения. Впервые это было показано Энгельманом в опыте: при нанесении раздражения на один участок мышцы она сокращалась вся целиком, что доказывало распространение возбуждения не только в продольном, но и в поперечном направлении.

Рефрактерность

Период рефрактерности значительно более выраженный и удлиненный по сравнению с другими возбудимыми тканями.

Сократимость

Закон «все или ничего». Сердечная мышца в отличие от скелетной (поперечнополосатой) подчиняется закону «все или ничего», т.е. она не отвечает на подпороговые раздражения, а на пороговое и надпороговое реагирует как одиночное исчерченное мышечное волокно — сокращением максимальной амплитуды.

Закон Старлинга. Согласно закону, сила сокращения волокон сердечной мышцы зависит от их первоначальной длины во время покоя. Чем сильнее растяжение полостей сердца кровью, тем мощнее систола и тем больше крови выбрасывает сердце при одной систоле. Этот закон справедлив только при средних величинах растяжения сердечной мышцы.

Автоматизм — способность сердца сокращаться под влиянием импульсов, возникающим в нем самом. Ритмическая деятельность сердца происходит благодаря наличию в области ушка правого предсердия ведущего центра автоматизма — синусно-предсердного (синусного) узла. От него по проводящим волокнам предсердий возбуждение достигает атриовентрикулярного узла, расположенного в стенке правого предсердия вблизи перегородки между предсердиями и желудочками. Здесь возбуждение переходит на миокард желудочков по волокнам пучка Гиса (предсердно-желудочкового пучка) и достигает волокон Пуркинье (сердечных проводящих миоцитов). В норме водителем ритма сердца является синусно-предсердный узел; он обладает всеми качествами истинного пейсмекера (задаватель ритма).

Гемодинамическая функция сердца.

Сердце как насос. Работа сердца проявляется последовательными ритмическими сокращениями предсердий и желудочков, чередующимися с их расслаблениями. Сокращение любого отдела сердца называется систолой, расслабление — диастолой, общий покой — паузой. Систола предсердий происходит на фоне диастолы желудочков, вслед за тем возникает систола желудочков, а предсердия находятся в диастоле. Далее вся мышца сердца приходит в состояние покоя. После паузы наступает новое чередование его работы в том же порядке. Каждое повторение работы сердца и покоя называется одиночным циклом сердечной деятельности.

Дата добавления: 2016-01-30 ; просмотров: 10554 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию
Adblock
detector